Datenverarbeitung durch Spinwellen
Schnellere und effizientere Verarbeitung von Informationen als Perspektive
Beim Verarbeiten von Informationen spielen Elektronen eine wichtige Rolle. Geräte werden aber immer kleiner und leistungsfähiger. Elektrischer Strom mit seiner hohen Abwärme stösst hier an Grenzen. Daher arbeitet die Forschung an Alternativen, etwa am Einsatz von Spinwellen. Erstmals haben Physiker der TU Kaiserslautern Informationen mittels Spinwellen in einem speziellen Bauteil, einem besonderen Logikgatter, verarbeitet. Solche Techniken könnten das Verarbeiten und Übertragen von Daten künftig schneller und effizienter machen und herkömmliche Halbleiter-Techniken ersetzen.
Elektrischer Strom wird neuen technischen Anforderungen oft nicht mehr gerecht. Eine Alternative hierfür stellen Spinwellen dar. «Ein Spin beschreibt den Eigendrehimpuls eines Quantenteilchens, etwa bei einem Elektron oder Proton», sagt Doktorand Tobias Fischer, Erstautor der aktuellen Studie. «Es bildet die Grundlage für alle magnetischen Phänomene.» Die Quantenteilchen der Spinwellen, die Magnonen, können mehr Informationen transportieren als Elektronen und dabei deutlich weniger Energie verbrauchen und weniger Abwärme erzeugen. Dies macht Spinwellen für die Anwendung interessant.
Der Doktorand hat nun erstmals untersucht, ob Spinwellen in einem sogenannten logischen Gatter verarbeitet werden können. Bisher verarbeiten solche Bauteile Informationen mittels elektrischem Strom. Sie kommen zum Beispiel in Computern in Form von Transistoren zum Einsatz. Die Signalkodierung bei einem solchen Logikgatter erfolgt über die Zustände «0» und «1».
Das Bauteil der Kaiserslauterer Physiker hat die Form eines Dreizacks und besteht aus dem Mineral Yttrium-Eisen-Granat, das magnetisch ist. «In die einzelnen Zacken werden Spinwellen eingespeist. Wichtig ist hierbei die Phase, also ob relativ zu einer Referenzzeit gerade ein Wellenberg oder ein Wellental anliegt», erklärt Fischer das Prinzip. In der Folge laufen diese Wellen durch alle drei Zacken zum anderen Ende und überlagern sich am Knotenpunkt des Dreizacks. «Durch diese Interferenzen kommt es zu einer Verschiebung der Wellenberge und -täler», sagt Dr. Andrii Chumak, Mitautor der Studie. «Diese Signale, die sogenannten Phasenverschiebungen, können wir auslesen.» Fischers Kollegen hatten diese Wellen bereits zuvor in Simulationen untersucht. Der Doktorand konnte diese nun im Experiment nachweisen.
Techniken wie diese könnten künftig das Verarbeiten von Informationen wesentlich schneller und effizienter gestalten, etwa als energieeffiziente Alternative für derzeitige Halbleiter-basierte Technologien.
20.4.2017
Kommentare